Abstract

Bone marrow stromal cell antigen-2 (BST-2) inhibits human immunodeficiency virus type 1 (HIV-1) release by cross-linking nascent virions on infected cell surface. HIV-1 Vpu is thought to antagonize BST-2 by downregulating its surface levels via a mechanism that involves intracellular sequestration and lysosomal degradation. Here, we investigated the functional importance of cell-surface BST-2 downregulation and the BST-2 pools targeted by Vpu using an inducible proviral expression system. Vpu established a surface BST-2 equilibrium at ∼60% of its initial levels within 6 h, a condition that coincided with detection of viral release. Analysis of BST-2 post-endocytic trafficking revealed that the protein is engaged in a late endosomal pathway independent of Vpu. While Vpu moderately enhanced cell-surface BST-2 clearance, it strongly affected the protein resupply to the plasma membrane via newly synthesized proteins. Noticeably, Vpu affected clearance of surface BST-2 more substantially in Jurkat T cells than in HeLa cells, suggesting a cell-dependent impact of Vpu on the pool of surface BST-2. Collectively, our data reveal that Vpu imposes a new BST-2 equilibrium, incompatible with efficient restriction of HIV-1 release, by combining an acceleration of surface BST-2 natural clearance, whose degree might be cell-type dependent, to a severe impairment of the protein resupply to the plasma membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call