Abstract
We investigated the role of the HIV-1 protein Tat in AIDS-associated dementia, by studying its toxicity on rat cortical and hippocampal neurons in vitro. We evaluated the involvement of astroglial cells and of caspase transduction pathway in determining Tat toxicity. Here we report that synthetic Tat1–86 induced apoptotic death on cultured rat neurons in a time-dependent manner that was not influenced by glial coculture, and that was abolished by blocking caspase transduction pathway. A microfluorimetric analysis on the Tat excitatory properties on neurons, and its effect on intracellular calcium concentrations, revealed that Tat1–86 induced increase in cytoplasmic free calcium concentrations in rat hippocampal and cortical neurons. This effect required extracellular calcium and was differently reduced by voltage dependent calcium channel blockers and both NMDA and non-NMDA glutamate receptors antagonists. Furthermore, we observed that Tat1–86-treated neurons showed increased sensitivity to the glutamate excitotoxicity. Thus, the Tat-induced neuronal injury seems to occur through a direct interaction of the protein with neurons, requires activation of caspases, and is likely to derive from Tat1–86-induced calcium loads and disruption of glutamatergic transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.