Abstract

The reading frame of the HIV-1 pol gene, encoding protease (PR) and reverse transcriptase (RT), including RNase H as well as integrase, was fused to the bacterialbeta-galactosidase gene and overexpressed in Escherichia coli cells. The resulting fusion protein was cleaved autocatalytically leading to PR, RT and integrase. Immunoprecipitations of bacterial crude extracts with anti-RT antibodies precipitated both RT and PR. Co-precipitation of PR and RT was also observed with anti-PR antibodies, strongly suggesting a physical interaction between fully processed RT and PR within the bacterial cell. Physical interactions were confirmed with purified components by means of an ELISA assay. Furthermore, purified PR inhibited the DNA synthesis activity of purified RT, while its RNase H activity remained unaffected. The type of inhibition was uncompetitive with respect to poly(rA).oligo(dT); the inhibition constant was 50-100 nM. A possible physiological significance of this type of interaction is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.