Abstract

It is well established that HIV-1 infection typically involves an interaction between the viral envelope protein gp120/41 and the CD4 molecule followed by a second interaction with a chemokine receptor, usually CCR5 or CXCR4. In the early stages of an HIV-1 infection CCR5 using viruses (R5 viruses) predominate. In some viral subtypes there is a propensity to switch to CXCR4 usage (X4 viruses). The receptor switch occurs in ~ 40% of the infected individuals and is associated with faster disease progression. This holds for subtypes B and D, but occurs less frequently in subtypes A and C. There are several hypotheses to explain the preferential transmission of R5 viruses and the mechanisms that lead to switching of co-receptor usage; however, there is no definitive explanation for either. One important consideration regarding transmission is that signaling by R5 gp120 may facilitate transmission of R5 viruses by inducing a permissive environment for HIV replication. In the case of sexual transmission, infection by HIV requires the virus to breach the mucosal barrier to gain access to the immune cell targets that it infects; however, the immediate events that follow HIV exposure at genital mucosal sites are not well understood. Upon transmission, the HIV quasispecies that is replicating in an infected donor contracts through a “genetic bottleneck”, and often infection results from a single infectious event. Many details surrounding this initial infection remain unresolved. In mucosal tissues, CD4+ T cells express high levels of CCR5, and a subset of these CD4+/CCR5high cells express the integrin α4β7, the gut homing receptor. CD4+/CCR5high/ α4β7high T cells are highly susceptible to infection by HIV-1 and are ideal targets for an efficient productive infection at the point of transmission. In this context we have demonstrated that the HIV-1 envelope protein gp120 binds to α4β7 on CD4+ T cells. On CD4+/CCR5high/ α4β7high T cells, α4β7 is closely associated with CD4 and CCR5. Furthermore, α4β7 is ~3 times the size of CD4 on the cell surface, that makes it a prominent receptor for an efficient virus capture. gp120-α4β7 interactions mediate the activation of the adhesion-associated integrin LFA-1. LFA-1 facilitates the formation of virological synapses and cell-to-cell spread of HIV-1. gp120 binding to α4β7 is mediated by a tripeptide located in the V1/V2 domain of gp120. Of note, the V1/V2 domain of gp120 has been linked to variations in transmission fitness among viral isolates raising the intriguing possibility that gp120-α4β7 interactions may be linked to transmission fitness. Although many details remain unresolved, we hypothesize that gp120-α4β7 interactions play an important role in the very early events following sexual transmission of HIV and may have important implication in the design of vaccine strategies for the prevention of acquisition of HIV infection

Highlights

  • Infection by HIV-1 causes a profound depletion of CD4+ T cells

  • A4b7 and CCR5 are coexpressed on a CD4+ T-cell subset that is highly susceptible to infection, which may favor the transmission of R5 viruses a4b7 is upregulated on activated CD4+ T cells localized within mucosal tissues that are highly relevant to HIV-1 pathogenesis: Peyer’s patches, mesenteric lymph nodes, lamina propria, and genital mucosa [15,16,19,27,28]

  • In natural infection the HIV-1 envelope protein is the primary target of neutralizing antibodies [67,96]

Read more

Summary

Introduction

Infection by HIV-1 causes a profound depletion of CD4+ T cells. This depletion eventually leads to the progression of HIV disease resulting in AIDS. A4b7 and CCR5 are coexpressed on a CD4+ T-cell subset that is highly susceptible to infection, which may favor the transmission of R5 viruses a4b7 is upregulated on activated CD4+ T cells localized within mucosal tissues that are highly relevant to HIV-1 pathogenesis: Peyer’s patches, mesenteric lymph nodes, lamina propria, and genital mucosa [15,16,19,27,28]. These cells express high levels of CCR5, and represent an ideal target population for productive infection. The identification of the two mAbs, that target conserved residues embedded within the variable loops suggest that variable loops can be considered as potential targets for a gp120-based vaccine immunogen [94,95]

Conclusion
Picker LJ
49. Haase AT
67. Hoxie JA
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.