Abstract

Elucidating mechanisms leading to the natural control of HIV-1 infection is of great importance for vaccine design and for understanding viral pathogenesis. Rare HIV-1-infected individuals, termed HIV-1 controllers, have plasma HIV-1 RNA levels below the limit of detection by standard clinical assays (<50 to 75 copies/ml) without antiretroviral therapy. Although several recent studies have documented persistent low-grade viremia in HIV-1 controllers at a level not significantly different from that in HIV-1-infected individuals undergoing treatment with combination antiretroviral therapy (cART), it is unclear if plasma viruses are undergoing full cycles of replication in vivo or if the infection of new cells is completely blocked by host immune mechanisms. We studied a cohort of 21 HIV-1 controllers with a median level of viremia below 1 copy/ml, followed for a median of 11 years. Less than half of the cohort carried known protective HLA types (B*57/27). By isolating HIV-1 RNA from large volumes of plasma, we amplified single genome sequences of both pro-rt and env longitudinally. This study is the first to document that HIV-1 pro-rt and env evolve in this patient group, albeit at rates somewhat lower than in HIV-1 noncontrollers, in HLA B*57/27-positive, as well as HLA B*57/27-negative, individuals. Viral diversity and adaptive events associated with immune escape were found to be restricted in HIV-1 controllers, suggesting that replication occurs in the face of less overall immune selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call