Abstract

A second-order random walk on a graph or network is a random walk where transition probabilities depend not only on the present node but also on the previous one. A notable example is the non-backtracking random walk, where the walker is not allowed to revisit a node in one step. Second-order random walks can model physical diffusion phenomena in a more realistic way than traditional random walks and have been very successfully used in various network mining and machine learning settings. However, numerous questions are still open for this type of stochastic processes. In this work, we extend well-known results concerning mean hitting and return times of standard random walks to the second-order case. In particular, we provide simple formulas that allow us to compute these numbers by solving suitable systems of linear equations. Moreover, by introducing the ‘pullback’ first-order stochastic process of a second-order random walk, we provide second-order versions of the renowned Kac’s and Random Target Lemmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.