Abstract

Interceptive timing is a fundamental ability underpinning numerous actions (e.g., ball catching), but its development and relationship with other cognitive functions remain poorly understood. Piaget suggested that children need to learn the physical rules that govern their environment before they can represent abstract concepts such as number and time. Thus, learning how objects move in space and time may underpin the development of related abstract representations (i.e., mathematics). To test this hypothesis, we captured objective measures of interceptive timing in 309 primary school children (5–11 years old), alongside scores for general motor skill and national standardized academic attainment. Bayesian estimation showed that interceptive timing (but not general motor capability) uniquely predicted mathematical ability even after we controlled for age, reading, and writing attainment. This finding demonstrates that interceptive timing is distinct from other motor skills with specificity in predicting childhood mathematical ability independently of other forms of attainment and motor capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.