Abstract
We consider a Markovian stochastic fluid flow model in which the fluid level has a lower bound zero and a positive upper bound. The behavior of the process at the boundaries is modeled by parameters that are different than those in the interior and allow for modeling a range of desired behaviors at the boundaries. We illustrate this with examples. We establish formulas for several time-dependent performance measures of significance to a number of applied probability models. These results are achieved with techniques applied within the fluid flow model directly. This leads to useful physical interpretations, which are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.