Abstract
The electrostatic features of highly charged biomolecules are crucial and challenging tasks in computational biophysics. The electrostatic calculations by traditional implicit solvent methods are efficient but have difficulties on highly charged biomolecules. We have developed a Hybridizing Ion Treatment (HIT) tool, which successfully hybridizes the explicit ions and implicit solvation model to accurately calculate the electrostatic potential for highly charged biomolecules. Here we implemented the HIT tool into a web server. In this study, a training set was prepared to optimize the number of frames for the HIT web server. The results on tubulins, DNAs, and RNAs, reveal the mechanisms for the motor proteins, DNA of HIV, and tRNA. This HIT web server can be widely used to study highly charged biomolecules, including DNAs, RNAs, molecular motors, and other highly charged biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.