Abstract
Antagonism of the human adenosine A3 receptor (hA3R) has potential therapeutic application. Alchemical relative binding free energy calculations of K18 and K32 suggested that the combination of a 3-(2,6-dichlorophenyl)-isoxazolyl group with 2-pyridinyl at the ends of a carbonyloxycarboximidamide group should improve hA3R affinity. Of the 25 new analogues synthesized, 37 and 74 showed improved hA3R affinity compared to K18 (and K32). This was further improved through the addition of a bromine group to the 2-pyridinyl at the 5-position, generating compound 39. Alchemical relative binding free energy calculations, mutagenesis studies and MD simulations supported the compounds' binding pattern while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, so highlighting the importance of rigidification of the carbonyloxycarboximidamide moiety. MD simulations highlighted the importance of rigidification of the carbonyloxycarboximidamide, while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, which was supported through mutagenesis studies 39 also selectively antagonized endogenously expressed hA3R in nonsmall cell lung carcinoma cells, while pharmacokinetic studies indicated low toxicity enabling in vivo evaluation. We therefore suggest that 39 has potential for further development as a high-affinity hA3R antagonist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.