Abstract

In this paper, we propose a new distributed hit-list worm detection method: the Anomaly Connection Tree Method with Distributed Sliding Window (ACTM-DSW). ACTM-DSW employs multiple distributed network Intrusion Detection Systems (IDSs), each of which monitors a small portion of an enterprise network. In ACTM-DSW, worm propagation trees are detected by using a sliding time window. More precisely, the distributed IDSs in ACTM-DSW cooperatively detect tree structures composed of the worm's infection connections that have been made within a time window. Through computer-based simulations, we demonstrate that ACTM-DSW outperforms an existing distributed worm detection method, called d-ACTM/VT, for detecting worms whose infection intervals are not constant, but rather have an exponential or uniform distribution. In addition, we implement the distributed IDSs on Xen, a virtual machine environment, and demonstrate the feasibility of the proposed method experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.