Abstract
It is well-recognised that steady-state isometric muscle force is decreased following active shortening (force depression, FD) and increased following active stretch (force enhancement, FE). It has also been demonstrated that passive muscle force is increased following active stretch (passive FE). Several studies have reported that FD increases with shortening amplitude and that FE and passive FE increase with stretch amplitude. Here, we investigate whether these trends continue with further increases in shortening or stretch amplitude. Experiments were performed using in situ cat soleus muscles ( n=8 for FD; n=7 for FE and passive FE). FD, FE and passive FE were measured after shortening or stretch contractions that covered as wide a range of amplitudes as practically possible without damaging the muscles. FD increased approximately linearly with shortening amplitude, over the full range of amplitudes investigated. This is consistent with the hypothesis that FD arises from a stress-induced inhibition of crossbridges. FE increased with stretch amplitude only up to a point, and then levelled off. Passive FE, and the transient increase in force at the end of stretch, showed relationships to stretch amplitude that were qualitatively very similar to the relationship for FE, increasing only until the same critical stretch amplitude had been reached. We conclude that FE and passive FE do not increase with stretch amplitude under all circumstances. This finding has important consequences for determining the mechanisms underlying FE and passive FE because any mechanism that is proposed to explain them must be able to predict it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.