Abstract
G. Cardano, physician, mathematician, and astrologer in Pavia, Italy, in 1550 described how sound may be perceived through the skull. A few years later H. Capivacci, also a physician in Padua, realized that this phenomenon might be used as a diagnostic tool for differentiating between hearing disorders located either in the middle ear or in the acoustic nerve. The German physician G. C. Schelhammer in 1684 was the first to use a common cutlery fork in further developing the experiments initiated by Cardano and Capivacci. For a long time to come, however, there was no demand for this in practical otology. The tuning fork was invented in 1711 by John Shore, trumpeter and lutenist to H. Purcell and G.F. Händel in London. A picture of Händel's own tuning fork, probably the oldest tuning fork in existence, is presented here for the first time. There are a number of anecdotes connected with the inventor of the tuning fork, using plays on words involving the name Shore, and mixing up pitch-pipe and pitchfork. Some of these are related here. The tuning fork as a musical instrument soon became a success throughout Europe. The German physicist E. F. F. Chladni in Wittenberg around 1800 was the first to systematically investigate the mode of vibration of the tuning fork with its nodal points. Besides this, he and others tried to construct a complete musical instrument based on sets of tuning forks, which, however, were not widely accepted. J. H. Scheibler in Germany in 1834 presented a set of 54 tuning forks covering the range from 220 Hz to 440 Hz, at intervals of 4 Hz. J. Lissajous in Paris constructed a very elaborate tuning fork with a resonance box, which was intended to represent the international standard of the musical note A with 435 vibrations per second, but this remained controversial. K. R. Koenig, a German physicist living in Paris, invented a tuning fork which was kept in continuous vibration by a clockwork. H. Helmholtz, physiologist in Heidelberg, in 1863 used sets of electromagnetically powered tuning forks for his famous experiments on the sensations of tone. Until the invention of the electronic valve, tuning forks remained indispensible instruments for producing defined sinusoidal vibrations. The history of this development is presented in detail. The diagnostic use of the tuning fork in otology will be described in a separate article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.