Abstract

Biogeochemical gradient forms in vadose zone, yet little is known about the assembly processes of microbial communities in this zone under petroleum disturbance. This study collected vadose zone soils at three sites with 0, 5, and 30 years of petroleum contamination to unravel the vertical microbial community successions and their assembly mechanisms. The results showed that petroleum hydrocarbons exhibited higher concentrations at the long-term contaminated site, showing negative impacts on some soil properties, retarding in the surface soils and decreasing along soil depth. Cultivable fraction of heterotrophic bacteria and microbial α-diversity decreased along depth in vadose zones with short-term/no contamination history, but exhibited an opposite trend with long-term contamination history. Petroleum contamination intensified the vertical heterogeneity of microbial communities based on the contamination time. Microbial co-occurrence network revealed the lowest species co-occurrence pattern at the long-term contaminated site. The distance-decay patterns and null model analysis together suggested distinct assembly mechanisms at three sites, where dispersal limitation (42–45%) was higher and variable and homogenizing selections were lower (37–38%) in vadose zones under petroleum disturbance than those in the uncontaminated vadose zone. Our findings help to better understand the subsurface biogeochemical cycles and bioremediation of petroleum-contaminated vadose zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call