Abstract

Abstract Creep strength of Grade 91 steels has been reviewed and allowable stress of the steels has been revised several times. Allowable stress regulated in ASME Boiler and Pressure Vessel Code of the steels with thickness of 3 inches and above was reduced in 1993, based on the re-evaluation with long-term creep rupture data collected from around the world. After steam leakage from long seam weld of hot reheat pipe made from Grade 122 steel in 2004, creep rupture strength of the creep strength enhanced ferritic (CSEF) steels has been reviewed by means of region splitting method in consideration of 50% of 0.2% offset yield stress (half yield) at the temperature, in the committee sponsored by the Ministry of Economy, Trade and Industry (METI) of Japanese Government. Allowable stresses in the Japanese technical standard of Grade 91 steels have been reduced in 2007 according to the above review. In 2010, additional long-term creep rupture data of the CSEF steels has been collected and the re-evaluation of creep rupture strength of the steels has been conducted by the committee supported by the Federation of Electric Power Companies of Japan, and reduction of allowable stress has been repeated in 2014. Regardless of the previous revision, additional reduction of the allowable stress of Grade 91 steels has been proposed by the review conducted in 2015 by the same committee as 2010. Further reduction of creep rupture strength of Grade 91 steels has been caused mainly by the additional creep rupture data of the low strength materials. A remaining of segregation of alloying elements has been revealed as one of the causes of lowered creep rupture strength. Improvement in creep strength may be expected by reducing segregation, since diffusional phenomena at the elevated temperatures is promoted by concentration gradient due to segregation which increases driving force of diffusion. It has been expected, consequently, that the creep strength and allowable stress of Grade 91 steels can be increased by proper process of fabrication to obtain a homogenized material free from undue segregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.