Abstract

A considerable amount of mobility data has been accumulated due to the proliferation of location-based services. Nevertheless, compared with mobility data from transportation systems like the GPS module in taxis, this kind of data is commonly sparse in terms of individual trajectories in the sense that users do not access mobile services and contribute their data all the time. Consequently, the sparsity inevitably weakens the practical value of the data even if it has a high user penetration rate. To solve this problem, we propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations at a fine-grained spatial-temporal resolution. To tackle the challenges posed by sparsity, we design various intra- and inter- trajectory attention mechanisms to better model the mobility regularity of users and fully exploit the periodical pattern from long-term history. In addition, to guarantee the robustness of the generated trajectories to avoid harming downstream applications, we also exploit the Bayesian approximate neural network to estimate the uncertainty of each imputation. As a result, locations generated by the model with high uncertainty will be excluded. We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods. In-depth analyses of each design of our model have been conducted to understand their contribution. We also show that, by providing high-quality mobility data, our model can benefit a variety of mobility-oriented downstream applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call