Abstract

We consider a class of subdifferential inclusions involving a history-dependent term for which we provide an existence and uniqueness result. The proof is based on arguments on pseudomonotone operators and fixed point. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Such kind of problems arises in a large number of mathematical models which describe quasistatic processes of contact between a deformable body and an obstacle, the so-called foundation. To provide an example we consider a viscoelastic problem in which the frictional contact is modeled with subdifferential boundary conditions. We prove that this problem leads to a history-dependent hemivariational inequality in which the unknown is the velocity field. Then we apply our abstract result in order to prove the unique weak solvability of the corresponding contact problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.