Abstract

The Jeffreys–Lindley paradox exposes a rift between Bayesian and frequentist hypothesis testing that strikes at the heart of statistical inference. Contrary to what most current literature suggests, the paradox was central to the Bayesian testing methodology developed by Sir Harold Jeffreys in the late 1930s. Jeffreys showed that the evidence for a point-null hypothesis {mathcal {H}}_0 scales with sqrt{n} and repeatedly argued that it would, therefore, be mistaken to set a threshold for rejecting {mathcal {H}}_0 at a constant multiple of the standard error. Here, we summarize Jeffreys’s early work on the paradox and clarify his reasons for including the sqrt{n} term. The prior distribution is seen to play a crucial role; by implicitly correcting for selection, small parameter values are identified as relatively surprising under {mathcal {H}}_1. We highlight the general nature of the paradox by presenting both a fully frequentist and a fully Bayesian version. We also demonstrate that the paradox does not depend on assigning prior mass to a point hypothesis, as is commonly believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call