Abstract
AbstractThe trade wind inversion (TWI) serves as an important stabilizing mechanism in the tropical North Atlantic (TNA) region, including the Caribbean basin. Previous studies have diagnosed the TWI using in situ observations and radiosondes, typically over tropical islands. However, studies relying on these point measurements are unable to discern the climatology and evolution of the TWI over the rest of the TNA. This study addresses this gap in the literature through the use of high‐resolution ERA5 reanalysis model level data. Due to the advances in the ERA line of reanalysis products, ERA5 now provides vertical level resolution as fine as ~4 mb in the lower troposphere, enabling the identification of shallow inversions, such as the TWI, consistently on a climatological time scale in remote regions of the world. While still coarser than observed soundings, this reanalysis‐based approach provides a first attempt in understanding TNA TWI variability and its strength and frequency trends from 1979 to 2019. The TWI climatology constructed here finds consilience with previous modelling and observational studies in terms of the spatial variability of the TWI base and strength across this domain. Stronger and more frequent TWIs are noted across the central TNA across all seasons. Results from a Mann–Kendall analysis reveals increasing trends in TWI frequency and strength that vary spatially across the domain based on season. The most widespread and strongest increasing TWI frequency and strength signal is over the central TNA from December to July. Due to the regionalization of trends noted, potential regional forcing mechanisms responsible for these changes are discussed.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.