Abstract

Soybean [Glycine max (L.) Merr.] is the most important oilseed crop for animal industry due to its high protein concentration and high relative abundance of essential and non-essential amino acids (AAs). However, the selection for high-yielding genotypes has reduced seed protein concentration over time, and little is known about its impact on AAs. The aim of this research was to determine the genetic shifts of seed composition for 18 AAs in 13 soybean genotypes released between 1980 and 2014. Additionally, we tested the effect of nitrogen (N) fertilization on protein and AAs trends. Soybean genotypes were grown in field conditions during two seasons under a control (0 N) and a N-fertilized treatment receiving 670 kg N ha−1. Seed yield increased 50% and protein decreased 1.2% comparing the oldest and newest genotypes. The application of N fertilizer did not significantly affect protein and AAs concentrations. Leucine, proline, cysteine, and tryptophan concentrations were not influenced by genotype. The other AAs concentrations showed linear rates of decrease over time ranging from − 0.021 to − 0.001 g kg−1 year−1. The shifts of 11 AAs (some essentials such as lysine, tryptophan, and threonine) displayed a relative-to-protein increasing concentration. These results provide a quantitative assessment of the trade-off between yield improvement and seed AAs concentrations and will enable future genetic yield gain without overlooking seed nutritional value.

Highlights

  • Soybean [Glycine max (L.) Merr.] is the most important oilseed crop for animal industry due to its high protein concentration and high relative abundance of essential and non-essential amino acids (AAs)

  • The shifts of 11 AAs displayed a relative-to-protein increasing concentration. These results provide a quantitative assessment of the trade-off between yield improvement and seed AAs concentrations and will enable future genetic yield gain without overlooking seed nutritional value

  • Lysine, methionine, cysteine, tryptophan, and threonine are negatively correlated with seed protein concentration, whereas arginine and glutamic acid increase with seed protein c­ oncentration[9,13]

Read more

Summary

Introduction

Soybean [Glycine max (L.) Merr.] is the most important oilseed crop for animal industry due to its high protein concentration and high relative abundance of essential and non-essential amino acids (AAs). The shifts of 11 AAs (some essentials such as lysine, tryptophan, and threonine) displayed a relative-to-protein increasing concentration. These results provide a quantitative assessment of the trade-off between yield improvement and seed AAs concentrations and will enable future genetic yield gain without overlooking seed nutritional value. The essential AAs constitute a relatively smaller proportion of seeds including lysine, threonine, tryptophan, isoleucine, leucine, histidine, phenylalanine, valine, and the sulfur amino acids cysteine and ­methionine[11,12]. Seed N demand represents about 75% of the total plant

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call