Abstract

Five sediment cores were collected on the shelf of the inner Mississippi Bight in June 2003 for a suite of radionuclides to establish geochronologies and trace elements to examine patterns of contaminant deposition and accumulation. Core sites were chosen to reflect a matrix of variable water depths, proximity to the Mississippi River mouth as the primary source for terrigenous particles, and extent and duration of summertime water column hypoxia. The vertical distribution of239,240Pu and210Pbxs(=210Pbtotal−226Ra) provided reliable geochronological age constraints to develop models for mass accumulation rates and historic trace element inputs and variations. Mass accumulation rates ranged from 0.27 to 0.87 g cm−2yr−1 and were internally consistent using either210Pbxs or239,240Pu. Measured inventories of137Cs,239,240Pu, and210Pbxs were compared to atmospheric deposition rates to quantify potential sediment focusing or winnowing. Observed variability in calculated mass accumulation rates may be attributed foremost to site-specific proximity to the river mouth (i.e., sediment source), variability in water depth, and enhanced sediment focusing at the Mississippi River canyon site. Trace element concentrations were first normalized to Al, and then Al-normalized enrichment factors (ANEF) were calculated based on preanthropogenic and crustal trace element abundances. These ANEFs were typically >1 for V and Ba, while for most other elements studied, either no enrichment or depletion was observed. The enrichment of Ba may be related, in part, to the seasonal occurrence of oxygen-depleted subsurface waters off the Mississippi River delta, as well as being an ubiquitous byproduct of the petroleum industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call