Abstract

Hardware-in-the-loop simulation and test has been an essential part in the development of spacecraft formation flight, rendezvous, capture/docking, and spacecraft robotics systems since the Gemini project. The need to recreate the kinematics and/or dynamics of spacecraft motion on the ground has led to numerous simulators and testbeds at academic institutions, government facilities, and industry laboratories. The simulation facilities range from small air-bearing tables at universities to building-sized simulators for full-sized systems tests at NASA centers. For the first time to the best knowledge of the authors, the paper presents a systematic classification of spacecraft maneuver simulators into kinematic, dynamic, hybrid, and kino-dynamic systems and discusses the design alternatives, trade-offs and limitations to be considered for each type of simulator. The paper also lists current and past systems reported in literature, along with their primary characteristics. It is thus complementary to existing literature focused on air-bearing spacecraft attitude simulators and air-bearing maneuver simulators. The goal of the paper is to inform designers of new facilities of the current state of the art and the existing experience in the field, and to inform spacecraft developers of existing testbeds in order for them to be able to plan test and experiment campaigns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.