Abstract

Reports in the 1970s from several laboratories revealed that the affinity of photosynthetic machinery for dissolved inorganic carbon (DIC) was greatly increased when unicellular green microalgae were transferred from high to low-CO(2) conditions. This increase was due to the induction of carbonic anhydrase (CA) and the active transport of CO(2) and/or HCO(3) (-) which increased the internal DIC concentration. The feature is referred to as the 'CO(2)-concentrating mechanism (CCM)'. It was revealed that CA facilitates the supply of DIC from outside to inside the algal cells. It was also found that the active species of DIC absorbed by the algal cells and chloroplasts were CO(2) and/or HCO(3) (-), depending on the species. In the 1990s, gene technology started to throw light on the molecular aspects of CCM and identified the genes involved. The identification of the active HCO(3) (-) transporter, of the molecules functioning for the energization of cyanobacteria and of CAs with different cellular localizations in eukaryotes are examples of such successes. The first X-ray structural analysis of CA in a photosynthetic organism was carried out with a red alga. The results showed that the red alga possessed a homodimeric beta-type of CA composed of two internally repeating structures. An increase in the CO(2) concentration to several percent results in the loss of CCM and any further increase is often disadvantageous to cellular growth. It has recently been found that some microalgae and cyanobacteria can grow rapidly even under CO(2) concentrations higher than 40%. Studies on the mechanism underlying the resistance to extremely high CO(2) concentrations have indicated that only algae that can adopt the state transition in favor of PS I could adapt to and survive under such conditions. It was concluded that extra ATP produced by enhanced PS I cyclic electron flow is used as an energy source of H(+)-transport in extremely high-CO(2) conditions. This same state transition has also been observed when high-CO(2) cells were transferred to low CO(2) conditions, indicating that ATP produced by cyclic electron transfer was necessary to accumulate DIC in low-CO(2) conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.