Abstract

This paper presents historical results of graphite irradiation-induced creep experiments that were performed at Oak Ridge National Laboratory from the 1950's to the 1970's. These experiments were performed at temperatures from 150°C to 1000 °C, and bend stresses ranging from 500 to 5000 psi (∼3.3–34.5 MPa). The experimental setup utilized in-situ measurement of specimen displacement, on-line applied stress control, and the ability to change stress during the experiment. The different stress conditions showed that the primary creep strain and the steady-state creep rates both have a linear stress dependence. The temperature range used in this work resulted in trends that have not be previously presented in the literature: 1) a linear dependence of primary creep strain on temperature, and 2) the shape of steady state creep rate versus temperature (see graphical abstract). The maximum dose in the specimens was 0.9 dpa, which is sufficient to achieve steady-state creep without the structural changes that alter the observed creep behavior. The results from this experiment provide evidence that dispels that the pinning-unpinning model describes the mechanism of irradiation creep in graphite. Instead these results suggest a dislocation climb mechanism is the probable mechanism for creep within the crystalline regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.