Abstract

Since the initiation of economic reforms and opening up, China has witnessed an unprecedented rate of development across all sectors. However, the country has also experienced severe ecological damage, surpassing that of many other nations. The rapid economic growth has come at the expense of the environment, revealing a significant lack of coordination between urbanization and eco-environmental protection in China. Consequently, there is an urgent need for a comprehensive and continuous historical dataset of China’s eco-environmental quality (EEQ) based on remote sensing, allowing for the analysis of spatial and temporal changes. Such data would provide objective, scientific, and reliable support for China’s eco-environmental protection and pollution prevention policies, while addressing potential ecological risks resulting from urbanization. To achieve this, the entropy value method is employed to integrate multi-source remote sensing data and construct an evaluation system for China’s EEQ. Historical data from 2000 to 2017 is plotted to illustrate China’s EEQ over time. The findings of this study are as follows: (1) The entropy method effectively facilitates the construction of China’s eco-environmental quality assessment system. (2) From 2000 to 2017, approximately 39.7% of China’s regions witnessed a decrease in EEQ, while 60.3% exhibited improvement, indicating an overall enhancement in EEQ over the past eighteen years. (3) The Yangtze and Yellow River basins experienced improved EEQ due to China’s ecological restoration projects. (4) The future EEQ in China demonstrates a subtle positive trend across diverse contexts. This study departs from conventional approaches to EEQ evaluation by leveraging the advantages of multivariate remote sensing big data, including objectivity, timeliness, and accessibility. It provides a novel perspective for future eco-environmental quality evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.