Abstract
Building operations will be the most critical step in completing the “last mile” of global carbon neutrality. To seek the best practical path to decarbonize commercial building operations, this study assesses the decarbonization progress of commercial building operations in 16 countries over the last two decades considering socioeconomic, technical, climatic and end-use factors through the decomposing structural decomposition method. The results reveal that (1) the average carbon intensity of commercial building operations in 16 countries has maintained an annual decline of 1.94% throughout the period 2000–2019, and emission factors and industrial structures were generally the key to decarbonizing commercial building operations; (2) energy intensity effects have started to promote global decarbonization in commercial building operations since 2010, with contributions from space heating [-14.33 kg of carbon dioxide per square meter per year (kgCO2/m2/yr)], service lighting (-5.29 kgCO2/m2/yr), appliances and others (-2.85 kgCO2/m2/yr), and space cooling (-1.24 kgCO2/m2/yr); and (3) the total decarbonization of commercial building operations worldwide was 230.28 mega-tons of carbon dioxide per yr, with a decarbonization efficiency of 10.05% in 2001–2019. Moreover, the robustness of this decarbonization assessment is tested using the typical index decomposition analysis and the decarbonization strategies of global commercial building operations are reviewed. Overall, this study assesses the global historical progress in decarbonizing commercial building operations and closes the relevant gap, and it helps plan the stepwise carbon neutral pathway of future global buildings by the mid-century.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.