Abstract

Lead concentrations in tree rings of sycamore ( Acer pseudoplatanus L.), oak ( Quercus robur L.) and Scots pine ( Pinus sylvestris L.) sampled at a parkland in north-west England were measured in wood formed since the mid-1800s. Concentrations of Pb in Scots pine and oak peaked in wood formed between 1900 and 1940, most likely because of Pb accumulation in heartwood, indicating that oak and Scots pine are unsuitable for monitoring temporal changes in Pb deposition at the study site. In contrast, Pb concentrations in sycamore, a species that has similar heartwood and sapwood chemistry, were relatively constant in wood formed between the mid-1800s and 1950. Lead concentrations decreased steadily in sycamore tree rings formed after the 1950s, and decreased more abruptly in wood formed after 1985. This sharp decrease in wood Pb cannot be due to decreases in soil Pb concentration. Stable Pb isotope analysis was used to further investigate Pb patterns in sycamore wood. Excess 206Pb/ 207Pb ratios in tree-rings of sycamore were relatively constant, approximately 1.17, in wood formed prior to the 1930s, but decreased steadily thereafter reaching a minimum value of approximately 1.16 in wood formed between 1975 and 1985 after which time 206Pb/ 207Pb ratios increased. This pattern is consistent with changes in Pb isotope ratios measured in peat, sediment and aerosol samples in the UK. However, the magnitude of the decrease in 206Pb/ 207Pb (largely due to gasoline Pb) is considerably lower than in other studies and our estimates indicate that less than 20% of the total Pb in sycamore wood measured since the mid-1800s is derived from gasoline emissions. A more likely explanation for the pattern of Pb observed in sycamore tree rings is that soil Pb accumulates within rings of the diffuse porous wood over a number of years. Such uptake patterns would result in lower Pb concentrations in the outer (more recently formed) tree rings, which coincide with recent reductions in Pb deposition in the UK. Overall, this study indicates that tree ring chemistry is unsuitable for monitoring historical changes in Pb deposition at the study site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call