Abstract

BackgroundThe Asimina-Disepalum clade (Annonaceae subfam. Annonoideae tribe Annoneae) includes a major Neotropical-Asian biogeographical disjunction. We evaluate whether this disjunction can be explained by the Eocene boreotropics hypothesis, which relies on the existence of extensive boreotropical forests during the Late Palaeocene-Early Eocene thermal maximum (52–50 Ma), followed by disruption of boreotropical vegetation during post-Eocene cooling. Molecular dating using an uncorrelated relaxed molecular clock (UCLD) model with two fossil calibrations, ancestral range estimation, and ecological niche modelling across evolutionary time were performed. Our focus was the geographical origin of Disepalum and general biogeographic patterns within this genus. Comparison of ecological tolerance among extant species and niche reconstructions at ancestral nodes within the clade enabled insights in likely migration routes of lineages, as well as evaluating the role of bioclimatic ecological differentiation in the diversification of Disepalum within Southeast Asia.ResultsThe inferred vicariance event associated with the Asimina-Disepalum disjunction is estimated to have originated ca. 40 Mya [95% highest posterior density (HPD): 44.3–35.5 Mya]. The Disepalum crown lineage is estimated to have originated ca. 9 Mya (95% HPD: 10.6–7.6), either in western Malesia and continental Southeast Asia, or exclusively in western Malesia. Ecological niche modelling shows that seasonality of temperature and precipitation are major contributors determining the geographical range of species. Ancestral niche modelling furthermore indicates that the ancestor of the Asimina-Disepalum clade likely had bioclimatic preferences close to conditions found in current tropical and subtropical climates across Asia, whereas the ancestors of the Asimina and Disepalum crown groups are projected onto the more subtropical and tropical regions, respectively.ConclusionsThe vicariance event associated with the Neotropical-Asian disjunction within the Asimina-Disepalum clade likely coincided with climatic deterioration at the Eocene-Oligocene boundary. Although detrended component analyses (DCA) indicate that altitude and seasonality of temperature and precipitation have the greatest influence in determining the geographical range of species, isolation due to palaeogeographic and palaeoclimatic events appears to be of greater significance than climate niche differentiation in driving diversification in Disepalum.

Highlights

  • IntroductionWithin the Annonaceae, numerous examples have been identified, including at least nine disjunctions between the western Palaeotropics (African-Madagascar) and the eastern Palaeotropics (Asia, Australia) [2, 4, 7,8,9], three disjunctions between Africa and the Neotropics [2, 7, 10, 11], and three disjunctions between Asia and the Neotropics [2, 7, 10]

  • The mean rate of evolution is inferred as 7.1 × 10−4 substitutions per site per million years (95% highest posterior density (HPD) = 6.3 × 10−4– 8.0 × 10−4), with the birth rate at 0.04 per million years (95% HPD = 0.031–0.048)

  • The inferred vicariance event between the New World genus Asimina and the Southeast Asian genus Disepalum in the Oligocene (Fig. 1) is temporally congruent with the boreotropics hypothesis, suggesting that the intercontinental disjunction was caused by the large-scale disruption of a northern mid-latitude corridor of tropical vegetation due to climate deterioration in the late Eocene and early Oligocene

Read more

Summary

Introduction

Within the Annonaceae, numerous examples have been identified, including at least nine disjunctions between the western Palaeotropics (African-Madagascar) and the eastern Palaeotropics (Asia, Australia) [2, 4, 7,8,9], three disjunctions between Africa and the Neotropics [2, 7, 10, 11], and three disjunctions between Asia and the Neotropics [2, 7, 10] The origin of these disjunctions has often been explained by hypotheses that invoke intercontinental connectivity via land bridges and corridors with suitable climates, with vicariance resulting from the disruption of wider distributions due to changing climatic conditions [4]. Inherently immune to falsification, stochastic transoceanic dispersal events can be invoked to explain intercontinental disjunctions [6, 15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call