Abstract

Xerinae is the most species-rich subfamily of the Sciuridae (Rodentia). This group of animals has a long complex evolutionary history, which witnessed severe environmental changes. In this paper, a comprehensive approach integrating information from fossil records, morphological, molecular and geographical data of extant species, and events of paleoclimate and paleogeography, were used to explore the evolutionary processes in the Xerinae. Xerinae probably originated in Eurasia around the early Oligocene, and dispersed to Africa via the Africa-Eurasia Land Bridge on two occasions during the Miocene, and subsequently evolved into the Protoxerini and African Xerini. The tribe Marmotini derived from a Eurasian ancestor and thrived in North America. Tamias re-occupied Eurasia in the early Miocene, while the distributions of Marmota and ‘Spermophilus’ genus-groups were restricted to North America at least until the late Miocene. Global cooling and the emergence of grass-dominated ecosystems from 15 Ma are likely to be the main causes for the radiation of Marmotini. The body form of Xerinae displays an allometric mode of evolution, with ground-living taxa, such as Marmota, Cynomys and Xerus notably enlarged, while Tamias has remained slim in body form. To cope with the global environmental changes, particularly the global cooling induced forest degradation and grassland expansion in the late Miocene, most Marmotini developed into true ground squirrels with short tails. The slim body adaptation in Tamias may be related to competition from tree squirrels, or their hoarding behavior, the latter helping them to cope with cold winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call