Abstract

BackgroundForests in the Far North of Ontario (FNO), Canada, are likely the least studied in North America, and quantifying their current and future carbon (C) stocks is the first step in assessing their potential role in climate change mitigation. Although the FNO forests are unmanaged, the latter task is made more important by growing interest in developing the region’s natural resources, primarily for timber harvesting. In this study, we used a combination of field and remotely sensed observations with a land surface model to estimate forest C stocks in the FNO forests and to project their future dynamics. The specific objective was to simulate historical C stocks for 1901–2014 and future C stocks for 2015–2100 for five shared socioeconomic pathway (SSP) scenarios selected as high priority scenarios for the 6th Assessment Report on Climate Change.ResultsCarbon stocks in live vegetation in the FNO forests remained relatively stable between 1901 and 2014 while soil organic carbon (SOC) stocks steadily declined, losing about 16% of their initial value. At the end of the historical simulation (in 2014), the stocks were estimated at 19.8, 46.4, and 66.2 tCha−1 in live vegetation, SOC, and total ecosystem pools, respectively. Projections for 2015–2100 indicated effectively no substantial change in SOC stocks, while live vegetation C stocks increased, accelerating their growth in the second half of the twenty-first century. These results were consistent among all simulated SSP scenarios. Consequently, increase in total forest ecosystem C stocks by 2100 ranged from 16.7 to 20.7% of their value in 2015. Simulations with and without wildfires showed the strong effect of fire on forest C stock dynamics during 2015–2100: inclusion of wildfires reduced the live vegetation increase by half while increasing the SOC pool due to higher turnover of vegetation C to SOC.ConclusionsForest ecosystem C stock estimates at the end of historical simulation period were at the lower end but within the range of values reported in the literature for northern boreal forests. These estimates may be treated as conservatively low since the area included in the estimates is poorly studied and some of the forests may be on peat deposits rather than mineral soils. Future C stocks were projected to increase in all simulated SSP scenarios, especially in the second half of the twenty-first century. Thus, during the projected period forest ecosystems of the FNO are likely to act as a C sink. In light of growing interest in developing natural resources in the FNO, collecting more data on the status and dynamics of its forests is needed to verify the above-presented estimates and design management activities that would maintain their projected C sink status.

Highlights

  • Forests in the Far North of Ontario (FNO), Canada, are likely the least studied in North America, and quantifying their current and future carbon (C) stocks is the first step in assessing their potential role in climate change mitigation

  • This finding is echoed by [65] who state “there is both empirical and theoretical evidence that increases in soil inputs, especially under elevated ­CO2, may have little effect on soil organic carbon stocks.”

  • Results of another meta-analysis of 49 field experiments, located across North America, Europe, and Asia, suggest that the effect of warming depends on the amount of initial soil C stock: effects are negligible for sites with small initial C stock but occur beyond the stock values of 200–400 ­tCha−1 and are considerable in soil with stocks higher than 600 t­Cha−1 [15]

Read more

Summary

Introduction

Forests in the Far North of Ontario (FNO), Canada, are likely the least studied in North America, and quantifying their current and future carbon (C) stocks is the first step in assessing their potential role in climate change mitigation. The amount of C stored in forests continues to increase, partly offsetting increasing atmospheric C­ O2; Ter‐Mikaelian et al Carbon Balance Manage (2021) 16:21 forests are the main component of the terrestrial C sink, estimated as of 2018 at 3.5 billion tonnes of C annually or about 30% of total annual emissions [21]. Of particular importance is estimating forest’s future C stocks and whether they will continue to act as a C sink given that climate change is projected to substantially affect forest condition and growth. Quantifying the effects of climate change on forests is needed to develop climate change mitigation strategies

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.