Abstract

The macrophage is the primary host cell for the fungal pathogen Histoplasma capsulatum during mammalian infections, yet little is known about fungal genes required for intracellular replication in the host. Since the ability to scavenge iron from the host is important for the virulence of most pathogens, we investigated the role of iron acquisition in H. capsulatum pathogenesis. H. capsulatum acquires iron through the action of ferric reductases and the production of siderophores, but the genes responsible for these activities and their role in virulence have not been determined. We identified a discrete set of co-regulated genes whose transcription is induced under low iron conditions. These genes all appeared to be involved in the synthesis, secretion, and utilization of siderophores. Surprisingly, the majority of these transcriptionally co-regulated genes were found clustered adjacent to each other in the genome of the three sequenced strains of H. capsulatum, suggesting that their proximity might foster coordinate gene regulation. Additionally, we identified a consensus sequence in the promoters of all of these genes that may contribute to iron-regulated gene expression. The gene set included L-ornithine monooxygenase (SID1), the enzyme that catalyzes the first committed step in siderophore production in other fungi. Disruption of SID1 by allelic replacement resulted in poor growth under low iron conditions, as well as a loss of siderophore production. Strains deficient in SID1 showed a significant growth defect in murine bone-marrow-derived macrophages and attenuation in the mouse model of infection. These data indicated that H. capsulatum utilizes siderophores in addition to other iron acquisition mechanisms for optimal growth during infection.

Highlights

  • Iron acquisition is critical to cellular function and survival

  • We have identified genes that are involved in the synthesis of siderophores in this fungus and have found that siderophore production in H. capsulatum is important for its virulence

  • Since siderophore production is confined to microbes and plays no role in human biology, it is an excellent target for rational drug design

Read more

Summary

Introduction

Iron acquisition is critical to cellular function and survival. The host limits the access of iron to microbial pathogens by a variety of means [1]. We investigate the role of siderophoremediated iron acquisition in the fungal pathogen Histoplasma capsulatum, which parasitizes host macrophages during infection. Histoplasma capsulatum is a dimorphic, fungal pathogen that causes respiratory and systemic disease in humans. Infection of mammals is initiated by inhalation of fungal spores from soil in regions of the U.S where the organism is endemic. H. capsulatum grows in a budding yeast form that colonizes alveolar macrophages. Yeast cells replicate within the macrophage phagolysosome, but the molecular mechanisms governing survival within host cells remain largely undefined [2]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.