Abstract

High resolution, multispectral, and multimodal imagery of tissue biopsies is an indispensable source of information for diagnosis and prognosis of diseases. Automatic extraction of relevant features from these imagery is a valuable assistance for medical experts. A primary step in computational histology is accurate image segmentation to detect the number and spatial distribution of cell nuclei in the tissue, along with segmenting other structures such as lumen and epithelial regions which together make up a gland structure. This chapter presents an automatic segmentation system for histopathology imaging. Spatial constraint fuzzy C-means provides an unsupervised initialization. An active contour algorithm that combines multispectral edge and region informations through a vector multiphase level set framework and Beltrami color metric tensors refines the segmentation. An improved iterative kernel filtering approach detects individual nuclei centers and decomposes densely clustered nuclei structures. The obtained results show high performances for nuclei detection compared to the human annotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.