Abstract

BackgroundSarcoptic mange has been identified as the most significant infectious disease affecting the Iberian ibex (Capra pyrenaica). Despite several studies on the effects of mange on ibex, the pathological and clinical picture derived from sarcoptic mange infestation is still poorly understood. To further knowledge of sarcoptic mange pathology, samples from ibex were evaluated from histological, microbiological and serological perspectives.MethodsSamples of skin, non-dermal tissues and blood were collected from 54 ibex (25 experimentally infected, 15 naturally infected and 14 healthy). Skin biopsies were examined at different stages of the disease for quantitative cellular, structural and vascular changes. Sixteen different non-dermal tissues of each ibex were taken for histological study. Acetylcholinesterase and serum amyloid A protein levels were evaluated from blood samples from ibex with different lesional grade. Samples of mangy skin, suppurative lesions and internal organs were characterized microbiologically by culture. Bacterial colonies were identified by a desorption/ionization time-of-flight mass spectrometry system (MALDI TOF/TOF).ResultsThe histological study of the skin lesions revealed serious acanthosis, hyperkeratosis, rete ridges, spongiotic oedema, serocellular and eosinophilic crusts, exocytosis foci, apoptotic cells and sebaceous gland hyperplasia. The cellular response in the dermis was consistent with type I and type IV hypersensitivity responses. The most prominent histological findings in non-dermal tissues were lymphoid hyperplasia, leukocytosis, congestion and the presence of amyloid deposits. The increase in serum concentrations of acetylcholinesterase and amyloid A protein correlated positively with the establishment of the inflammatory response in mangy skin and the presence of systemic amyloidosis. A wide variety of bacterial agents were isolated and the simultaneous presence of these in mangy skin, lymph nodes and internal organs such as lungs, liver, spleen and kidney was compatible with a septicaemic pattern of infection.ConclusionsThe alteration of biomarkers of inflammation and its implication in the pathogenesis of the disease and development of lesions in non-dermal tissues and septicaemic processes are serious conditioners for the survival of the mangy ibex. This severe clinical picture could be an important factor when considering the decision to eliminate animals that exceed a certain disease threshold from a population.

Highlights

  • Sarcoptic mange has been identified as the most significant infectious disease affecting the Iberian ibex (Capra pyrenaica)

  • Severe outbreaks of sarcoptic mange have been reported in the Iberian ibex (Capra pyrenaica), some of which have led to high mortality rates [5, 6]

  • Initial IgG levels against S. scabiei were measured by an enzyme-linked immunosorbent assay (ELISA) developed for alpine chamois (Rupicapra rupicapra) in order to exclude ibex that had previously been in contact with the disease [18]

Read more

Summary

Introduction

Sarcoptic mange has been identified as the most significant infectious disease affecting the Iberian ibex (Capra pyrenaica). Sarcoptic mange is a highly contagious infection of the skin caused by the burrowing mite Sarcoptes scabiei that affects both humans and animals worldwide [1]. It is responsible for epizootic disease in several wild ungulate and carnivore species [2,3,4]. Severe outbreaks of sarcoptic mange have been reported in the Iberian ibex (Capra pyrenaica), some of which have led to high mortality rates [5, 6]. Damage to inner organs and secondary bacterial complications may compromise the survival of the host [11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call