Abstract

The incidence of inflammatory bowel disease (IBD) is increasing annually. Children with IBD often suffer significant morbidity due to physical and emotional effects of the disease and treatment. Corticosteroids, often a component of therapy, carry undesirable side effects with long term use. Steroid-free remission has become a standard for care-quality improvement. Anticipating therapeutic outcomes is difficult, with treatments often leveraged in a trial-and-error fashion. Artificial intelligence (AI) has demonstrated success in medical imaging classification tasks. Predicting patients who will attain remission will help inform treatment decisions. The provided dataset comprises 951 tissue section scans (167 whole-slides) obtained from 18 pediatric IBD patients. Patient level structured data include IBD diagnosis, 12- and 52-week steroid use and name, and remission status. Each slide is labelled with biopsy site and normal or abnormal classification per the surgical pathology report. Each tissue section scan from an abnormal slide is further classified by an experienced pathologist. Researchers utilizing this dataset may select from the provided outcomes or add labels and annotations from their own institutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.