Abstract

The objectives of this study were 1) to histologically validate the hippocampal subfield volumetry based on T2-weighted MRI, and 2) to explore its clinical impact on postsurgical memory function and seizure outcome in temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS). We analyzed the cases of 24 patients with medial TLE (12 left, 12 right) and HS who were preoperatively examined with T2-weighted high-resolution MRI. The volume of each hippocampal subfield was calculated with an automatic segmentation of hippocampal subfields (ASHS) program. Hippocampal sclerosis patterns were determined pathologically, and the cross-sectional area and neuronal cell density of the CA1 and CA4 subfields were calculated using tissue specimens. Pre- and postoperative memory evaluations based on the Wechsler Memory Scale-Revised (WMS-R) were performed. We compared the presurgical MRI-based volumes with the pathological measurements in each subfield and then compared them with the change in the patients' neurocognitive function. As a result, there was a significant relationship between the presurgical MRI-based volume of CA4/dentate gyrus (DG) and the cross-sectional area of CA4 calculated with tissue specimens (Spearman's rs = 0.482, p = 0.023), and a similar trend-level correlation was observed in CA1 (rs = 0.455, p = 0.058). Some of MRI-based or pathology-based parameters in the subfields preliminarily showed relationships with the postsurgical memory changes. In conclusion, automated subfield volumetry for patients with hippocampal sclerosis moderately reflects their subfield atrophy and might be useful to predict the postsurgical change of memory function in these patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call