Abstract

The aim of this study was to evaluate in vivo, by histological and radiographic analysis, the response of apical tissues of rats' teeth with experimentally induced apical periodontitis, after one- and two-session endodontic treatment with and without photodynamic therapy (PDT). A microbiological analysis was also performed to verify bacterial reduction after each treatment. Studies carried out in recent years highlighted the antibacterial potential of PDT when associated with conventional endodontic therapy in vitro. Although the antimicrobial effect of PDT is well-established, tissue response to PDT in teeth with apical periodontitis lacks studies. Thirty-two rats' root canals were assigned to four groups: one session/PDT-[chemomechanical preparation (CMP)+root canal filling (RCF)]; two sessions/PDT- [CMP+calcium hydroxide (CH) for 14 days+RCF]; one session/PDT+ [CMP+PDT+RCF], and two sessions/PDT+ [CMP+PDT+CH for 14 days+RCF]. For microbiological evaluation, samples were collected before and after proposed treatments. For radiographic and histological analysis, the animals were euthanized after 28 days and the mandibles surgically removed. PDT associated with conventional endodontic therapy was able to promote significant bacterial reduction in root canals with induced apical periodontitis, but this reduction was not significantly different to conventional endodontic therapy alone. Although radiographic evaluation showed no significant differences, histological analysis showed lower scores for neutrophils/eosinophils in PDT-treated groups and macrophages/giant cells in CH groups. The use of low-level laser as light source did not promote major improvement on radiographic and histological repair, but since the number of inflammatory cells slightly decreased, it may optimize repair by modulating inflammatory process. PDT may be indicated as an adjunct to conventional endodontic therapy for teeth with apical periodontitis, in association with an interappointment dressing with CH, in an attempt to produce better conditions to stimulate repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.