Abstract

Background: Making an automatic diagnosis based on virtual slides and whole slide imaging or even determining whether a case belongs to a single class, representing a specific disease, is a big challenge. In this work we focus on WHO Classification of Tumours of the Central Nervous System. We try to design a method which allows to automatically distinguish virtual slides which contain histopathologic patterns characteristic of glioblastoma – pseudopalisading necrosis and discriminate cases with neurinoma (schwannoma), which contain similar structures – palisading (Verocay bodies). Methods: Our method is based on computer vision approaches like structural analysis and shape descriptors. We start with image segmentation in a virtual slide, find specific patterns and use a set of features which can describe pseudopalisading necrosis and distinguish it from palisades. Type of structures found in a slide decides about its classification. Results: Described method is tested on a set of 49 virtual slides, captured using robotic microscope. Results show that 82% of glioblastoma cases and 90% of neurinoma cases were correctly identified by the proposed algorithm. Conclusion: Our method is a promising approach to automatic detection of nervous system tumors using virtual slides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.