Abstract
Abasic sites (AP) are produced 10 000 times per day in a single cell. Strand cleavage at AP is accelerated ≈100-fold within a nucleosome core particle (NCP) compared to free DNA. The lysine-rich N-terminal tails of histone proteins catalyze single-strand breaks through a mechanism used by base-excision-repair enzymes, despite the general dearth of glutamic acid, aspartic acid, and histidine-the amino acids that are typically responsible for deprotonation of Schiff base intermediates. Incorporating glutamic acid, aspartic acid, or histidine proximal to lysine residues in histone N-terminal tails increases AP reactivity as much as sixfold. The rate acceleration is due to more facile DNA cleavage of Schiff-base intermediates. These observations raise the possibility that histone proteins could have evolved to minimize the presence of histidine, glutamic acid, and aspartic acid in their lysine-rich N-terminal tails to guard against enhancing the toxic effects of DNA damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.