Abstract

BackgroundRecent studies have considered the obesity-related lipid environment as the potential cause for M1 macrophage polarization in type 2 diabetes. However, the specific regulatory mechanism is still unclear. Here, we investigated the role and molecular mechanism of histone methyltransferases G9a in lipids-induced M1 macrophage polarization in type 2 diabetes. MethodsWe used saturated fatty acid palmitate to induce macrophage polarization, and performed real-time PCR, western blot, flow cytometry and CHIP assay to study the function and molecular mechanism of G9a. Additionally, we isolated the peripheral blood mononuclear cells (PBMCs) from 187 patients with type 2 diabetes and 68 healthy individuals, and analyzed the expression level of G9a. ResultsThe palmitate treatment induced the macrophage M1 polarization, and decreased the expression of G9a. The deficiency of G9a could promote the palmitate-induced M1 macrophage polarization, whereas, over-expressing G9a notably suppressed this process. Meanwhile, we observed the regulatory role of G9a on the ER stress which could contribute to M1 macrophage. Furthermore, we identified the fatty acid transport protein CD36 as the potential target of G9a. Dependent on the methyltransferase activity, G9a could negatively regulate the expression of CD36 induced by palmitate. The CD36 inhibitor SSO could significantly attenuate the regulatory effect of G9a on M1 macrophage polarization and ER stress. Importantly, G9a was decreased, and suppressed CD36 and M1 macrophage genes in the PBMCs from individuals with type 2 diabetes. ConclusionsOur studies demonstrate that G9a plays critical roles in lipid-induced M1 macrophage polarization via negatively regulating CD36.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.