Abstract
Emerging evidence indicates that multiple mechanisms are involved in bone loss induced by mechanical unloading. Thus far, few study has established the pathophysiological role of histone modification for osteogenic differentiation under mechanical unloading. Here we demonstrated that the histone H3 lysine 9 (H3K9) methyltransferase Setdb1, which was sensitive to mechanical unloading, was increased during osteogenic differentiation of MC3T3-E1 cells for the first time. Knockdown of Setdb1 significantly blocked osteoblast function in vivo and in vitro. Through bioinformatics analysis of candidate miRNAs regulated by H3K9me3, we further identified that Setdb1 inhibited the expression of miR-212-3p by regulating the formation of H3K9me3 in the promoter region. Mechanically, we revealed that miR-212-3p was upregulated under mechanical unloading and suppressed osteogenic differentiation by directly downregulating High mobility group box 1 protein (Hmgb1) expression. Furthermore, we verified the molecular mechanism of the SETDB1/miR-212-3p/HMGB1 pathway in hFOB cells under mechanical unloading. In summary, these data demonstrate the essential function of the Setdb1/miR-212-3p/Hmgb1 pathway in osteogenic differentiation under mechanical unloading, and present a potential protective strategies against bone loss induced by mechanical unloading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.