Abstract

Aberrant histone lysine methylation that is controlled by histone lysine methyltransferases (KMTs) and demethylases (KDMs) plays significant roles in carcinogenesis. Infections by tumor viruses or parasites and exposures to chemical carcinogens can modify the process of histone lysine methylation. Many KMTs and KDMs contribute to malignant transformation by regulating the expression of human telomerase reverse transcriptase (hTERT), forming a fused gene, interacting with proto-oncogenes or being up-regulated in cancer cells. In addition, histone lysine methylation participates in tumor suppressor gene inactivation during the early stages of carcinogenesis by regulating DNA methylation and/or by other DNA methylation independent mechanisms. Furthermore, recent genetic discoveries of many mutations in KMTs and KDMs in various types of cancers highlight their numerous roles in carcinogenesis and provide rare opportunities for selective and tumor-specific targeting of these enzymes. The study on global histone lysine methylation levels may also offer specific biomarkers for cancer detection, diagnosis and prognosis, as well as for genotoxic and non-genotoxic carcinogenic exposures and risk assessment. This review summarizes the role of histone lysine methylation in the process of cellular transformation and carcinogenesis, genetic alterations of KMTs and KDMs in different cancers and recent progress in discovery of small molecule inhibitors of these enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.