Abstract
Epigenetic mechanisms including the post-translational modifications of histones, incorporation of histone variants and DNA methylation have been suggested to play an important role in genome plasticity by allowing the cellular environment to define gene expression and the phenotype of an organism. Studies over the past decade have elucidated how these epigenetic mechanisms are significant in orchestrating various biological processes and contribute to different pathophysiological states. However, the role of histone isoforms and their impact on different phenotypes and physiological processes associated with diseases are not fully clear. This review is focussed on the recent advances in our understanding of the complexity of eukaryotic H2A isoforms and their roles in defining nucleosome organization. We elaborate on their potential roles in genomic complexity and regulation of gene expression, and thereby on their overall contribution towards cellular phenotype and development of diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.