Abstract

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases of the central nervous system. The aggregation of the amyloid-β peptide, Aβ(1-42), is believed to play an important role in the pathogenesis of AD. Histone H1 is found in the cytoplasm of neurons in AD, and it has been shown to interact with aggregated amyloid-β peptides and with amyloid fibrils. We have used Thioflavin T (ThT) fluorescence enhancement, circular dichroism spectroscopy (CD), coprecipitation, and transmission electron microscopy (TEM) to study the interaction of histone H1 with Aβ(1-42). Both freshly prepared (monomeric) Aβ(1-42) and histone H1 solutions showed negative CD bands typical of the random coil. Mixing Aβ(1-42) and histone H1 led to the loss of the random coil, which was replaced mostly by β-structure. Therefore, both Aβ(1-42) and histone H1 behave as intrinsically disordered proteins with coupled binding and folding. Mutual structure induction demonstrates the interaction of Aβ(1-42) and histone H1. The interaction was confirmed by coprecipitation followed by SDS-PAGE. Mutual structure induction was also observed with the H1 terminal domains. Incubation of Aβ(1-42) for 1 week in the presence of histone H1 led to the formation of laminar aggregates and thick bundles, characterized by the parallel association of large numbers of fibrils. The aggregates were particularly large and ordered with the H1 subtype H1.2. Further aging of the complexes led to tight compaction of fibril bundles and to fiber growth. Stabilization of fibril-fibril interactions appeared to be determined by the C-terminal domain of histone H1. In summary, these observations indicate that histone H1 has at least two effects: it helps the folding of Aβ monomers and stabilizes the parallel association of fibrils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call