Abstract

The highly conserved Hox transcription factors define positional identity along the anterior-posterior body axis during development. Inappropriate expression of Hox genes causes homeotic transformation, which leads to abnormal development of a specific region or segment. C. elegans offers an excellent model for studying factors required for the establishment of the spatially-restricted expression of Hox genes. We have recently identified chromatin factors, including a linker histone (H1) variant, HIS-24 and heterochromatin protein 1 (HP1) homolog, HPL-2, which contribute to the regulation of specific Hox gene expression through their binding to the repressive mark, H3K27me3. Furthermore, HIS-24 and HPL-2 act in a parallel pathway as members of the evolutionally conserved Polycomb group (PcG) silencing complex, MES-2/3/6. By microarray analysis, we found that HIS-24 and HPL-2 are not global transcriptional repressors as suggested by early studies, but rather are fine tuners of selected genes. Here, we discuss how HIS-24 and HPL-2 are responsible for the repression of specific genes in C. elegans. We suggest possible mechanisms for such an unanticipated function of an individual H1 variant and HP1 in the transcriptional repression of Hox genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call