Abstract

BackgroundHistone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development.ResultsSequence analysis of replication-dependent histone genes revealed the presence of several highly conserved sequence elements in the 3' untranslated region of histone pre-mRNAs, including an RNA hairpin element and a polyadenylation signal. To determine whether in C. elegans histone mRNA 3' end formation occurs at this polyadenylation signal and results in polyadenylated histone mRNA, we investigated the mRNA 3' end structure of histone mRNA. Using poly(A) selection, RNAse protection and sequencing of histone mRNA ends, we determined that a majority of C. elegans histone mRNAs lack a poly(A) tail and end three to six nucleotides after the hairpin structure, after an A or a U, and have a 3' OH group. RNAi knock down of CDL-1, the C. elegans HBP/SLBP, does not significantly affect histone mRNA levels but severely depletes histone protein levels. Histone gene expression varies during development and is reduced in L3 animals compared to L1 animals and adults. In adults, histone gene expression is restricted to the germ line, where cell division occurs.ConclusionOur findings indicate that the expression of C. elegans histone genes is subject to control mechanisms similar to the ones in other animals: the structure of C. elegans histone mRNA 3' ends is compatible with histone-specific mRNA 3' end processing; CDL-1 functions in post-transcriptional control of histone gene expression; and C. elegans histone mRNA levels are elevated at periods of active cell division, indicating that histone gene expression is linked to DNA replication.

Highlights

  • Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin

  • We demonstrate that knockdown of cdl-1 severely inhibits histone gene expression, but does not have a significant effect on histone mRNA steady state levels, compatible with a role for cdl-1 in post-transcriptional control of histone mRNA

  • The structure of C. elegans histone mRNAs 3' end structure A survey of C. elegans histone gene 3' untranslated region (3'UTR) and flanking regions revealed that the conserved 16 nucleotide hairpin sequence, the core element of the binding site for CDL-1 [16], is embedded in a highly conserved 32–36 nucleotide region, and is followed by a conserved AATCC element at a position indicating that this element may act as histone downstream element or spacer element (HDE), the binding site for the U7 snRNP (Fig. 1 and additional file 1)

Read more

Summary

Introduction

Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. Histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histonespecific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. Replication-dependent histone genes are expressed during S phase and provide the protein building blocks for chromatin. They are the only genes known to produce mRNAs that lack polyadenylated (poly (A)) tails, and instead end with a highly conserved hairpin structure. The expression of replacement variant histone genes is not linked to DNA synthesis, and their mRNAs, which normally lack the hairpin element, are polyadenylated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call