Abstract

Alteration of methylation status of lysine 27 on histone H3 (H3K27) associates with dramatic changes in gene expression in response to various differentiation signals. Demethylation of H3K27 is controlled by specific histone demethylases including ubiquitously transcribed tetratricopeptide repeat X chromosome (Utx). However, the role of Utx in osteoblast differentiation remains unknown. In this study, we examined whether Utx should be involved in osteoblast differentiation. Expression of Utx increased during osteoblast differentiation in MC3T3-E1 cells and primary osteoblasts. GSK-J1, a potent inhibitor of H3K27 demethylase, increased the levels of trimethylated H3K27 (H3K27me3) and decreased the expressions of Runx2 and Osterix and ALP activity in MC3T3-E1 cells. Stable knockdown of Utx by shRNA attenuated osteoblast differentiation and decreased ALP activity, calcium content, and bone-related gene expressions. Silencing of Utx increased the level of H3K27me3 on the promoter regions of Runx2 and Osterix and decreased the promoter activities of Runx2 and Osterix. Taken together, our present results propose that Utx plays important roles in osteoblast differentiation by controlling the expressions of Runx2 and Osterix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.