Abstract

Histone deacetylase (HDAC) inhibitors have both apoptotic and differentiating effects on various tumor cells. However, the mechanisms underlying the effect of HDAC inhibitors remain unclear. In this study, we investigated the function of anti-proliferative effects of HDAC inhibitors, N-butyric acid and trichostatin A, on human malignant glioma cell lines, U251-MG and D54. MTT assay showed a dose-dependent inhibition of cellular proliferation in both cell lines. Cell cycle analysis revealed increased sub-G1 population in both lines, and G1 arrest only in U251-MG cells. Induction of apoptosis was also supported by the occurrence of DNA fragmentation in tumor cells treated with HDAC inhibitors. Furthermore, caspase inhibition assay indicated that HDAC inhibitor-induced apoptosis was caspase-dependent. Neither mitochondrial membrane potential nor the expression of caspase-9 was changed by treatment with HDAC inhibitors, suggesting the possibility that HDAC inhibitor-induced apoptosis was not mediated by the mitochondrial cell death pathway. On the other hand, immunoblot assay confirmed increased expression of caspase-8 in both lines, and elevation of p21 but not p27 protein in U251-MG cells following HDAC inhibitor treatment. Taken together, the HDAC inhibitors, N-butyric acid and trichostatin A, induce caspase-8- but not caspase-9-dependent apoptosis with or without p21-mediated G1 arrest in human malignant glioma cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.