Abstract

Histone-deacetylase (HDAC) inhibitors (HDACi) can block proliferation and induce intrinsic apoptosis in human papillomavirus (HPV)-positive cervical carcinoma cells, independently of copy number and integration locus of the viral DNA. Using HPV18-positive HeLa cells as model systems, we provide evidence that HDAC inhibition leads to transcriptional suppression of c-FLIP, which negatively regulates extrinsic apoptosis by preventing the recruitment of caspase-8 to the death-inducing signaling complex. Consequently, HDACi pretreatment renders cervical cancer cells sensitive to TNFalpha and TRAIL-induced apoptosis. Already 5-hr incubation with TNFalpha or TRAIL was sufficient to eradicate more than 40% of pretreated cells, which are normally completely refractory against respective death-ligands alone even under long-term incubation. Ectopic expression of either short or long splicing variant of c-FLIP, c-FLIP(s) and c-FLIP(L), abrogates sensitization. Notably, combined HDACi/death ligand treatment did not result in eradication of HPV-negative cells, despite the fact that both c-FLIP isoforms were also downregulated. However, knocking down HPV18 E6/E7 transcription by siRNA prevents HDACi/death-ligand mediated apoptosis, indicating that continued viral oncogene expression favors sensitization. Here, the viral oncoprotein E7 seems to play a functional role, since only HPV16 E7-immortalized human keratinocytes underwent significant apoptosis on HDACi/TNFalpha treatment, whereas keratinocytes expressing only HPV16 E6 or primary keratinocytes were refractory under the same experimental conditions. Taken together, HDACi can be considered as an alternative therapeutic option in the treatment of premalignant and malignant lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.