Abstract

Histone deacetylase (HDAC) enzymes regulate diverse biological function, including gene expression, rendering them potential targets for intervention in a number of diseases, with a handful of compounds approved for treatment of certain hematologic cancers. Among the human zinc-dependent HDACs, the most recently discovered member, HDAC11, is the only member assigned to subclass IV. It is the smallest protein and has the least well understood biological function. Here, we show that HDAC11 cleaves long-chain acyl modifications on lysine side chains with remarkable efficiency. We further show that several common types of HDAC inhibitors, including the approved drugs romidepsin and vorinostat, do not inhibit this enzymatic activity. Macrocyclic hydroxamic acid-containing peptides, on the other hand, potently inhibit HDAC11 demyristoylation activity. These findings should be taken carefully into consideration in future investigations of the biological function of HDAC11 and will serve as a foundation for the development of selective chemical probes targeting HDAC11.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call