Abstract

ANTI-SILENCING FUNCTION 1 (ASF1) is an evolutionarily conserved histone chaperone involved in diverse chromatin-based processes in eukaryotes. Yet, its role in transcription and the underlying molecular mechanisms remain largely elusive, particularly in plants. Here, we show that the A rabidopsis thaliana ASF1 homologous genes, AtASF1A and AtASF1B, are involved in gene transcription activation in response to heat stress. The A tasf1ab mutant displays defective basal as well as acquired thermotolerance phenotypes. Heat-induced expression of several key genes, including the HEAT SHOCK PROTEIN (HSP) genes Hsp101, Hsp70, Hsa32, Hsp17.6A and Hsp17.6B-CI, and the HEAT SHOCK FACTOR (HSF) gene HsfA2 but not HsfB1 is drastically impaired in Atasf1ab as compared with that in wild type. We found that AtASF1A/B proteins are recruited onto chromatin, and their enrichment is correlated with nucleosome removal and RNA polymerase II accumulation at the promoter and coding regions of HsfA2 and Hsa32 but not HsfB1. Moreover, AtASF1A/B facilitate H3K56 acetylation (H3K56ac), which is associated with HsfA2 and Hsa32 activation. Taken together, our study unravels an important function of AtASF1A/B in plant heat stress response and suggests that AtASF1A/B participate in transcription activation of some but not all HSF and HSP genes via nucleosome removal and H3K56ac stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call